The ARIMA Box-Jenkins Method has been used to Predict the Price of Large Curly Red Chilis

Yustirania Septiani, Vinca Ayu Setyowati

Abstract

Chili is one of the potential commodities based on market demand and high economic value. The price of chili has fluctuated every month so that this commodity contributes to inflation in food that can affect overall general inflation. Thus, an analysis of forecasting prices for large curly red chili is needed so thar people and farmers do not need to worry and can prepare for future risks. Price forecasting in this study uses the Box-Jenkins ARIMA method. The data used is the price of lare curly red chili prices from December 2015 to April 2020. The data to be analyzed is then made into several forms of the ARIMA model and one will be chosen as the best ARIMA model. Based on the results of the study, ARIMA (1,1,3) is the best model. Thus the forecast results obtained for the price of large curly red chili in Magelang City from May 2020 to February 2021. With this research it is expected ti be able to assist the Depasrtment of Industry and Trade of Magelang City in making decisions related to the price of lare curly red chilli which fluctuates every year.

Keywords

Forcasting; Chili Prices; ARIMA

Full Text:

PDF

References

Jurnal :

Abinowi, E., & Sumitra, I. D. (2018). Forecasting Chilli Requirement with ARIMA Method. IOP Conf. Series : Materials Science and Engineering, 407, 1–6. https://doi.org/10.1088/1757-899X/407/1/012156

Asnhari, S. F., Gunawan, P. H., & Rusmawati, Y. (2019). Predicting Staple Food Materials Price Using Multivariables Factors (Regression and Fourier Models with ARIMA). 2019 7th International Conference on Information and Communication Technology, ICoICT, 1–5. https://doi.org/10.1109/ICoICT.2019.8835193

Hadiansyah, F. N. (2017). Prediksi Harga Cabai dengan Pemodelan Time Series ARIMA. Ind. Journal On Computing, 2(2010), 71–78. https://doi.org/10.21108/indojc.2017.21.144

Perihatini, D. I., Lestari, I. F., & Primandari, A. H. (2018). Peramalan Harga Cabai Merah Besar Keriting Kabupaten Banyumas Menggunakan Metode Arima Box-Jenkins. KNPMP, 567–576.

Pratiwi, L. F. L., & Rosyid, A. H. Al. (2020). Forecasting Of Chili Prices In The Special Region Of Yogyakarta, Indonesia Based On Harga Pangan Applications (Arima Approach). Proceeding International Conference on Green Agro-Industry, 4, 39–47.

Rahmanta, & Maryunianta, Y. (2020). Pengaruh Harga Komoditi Pangan Terhadap Inflasi Di Kota Medan. Agrica (Jurnal Agribisnis Sumatera Utara), 13(1), 35–44. https://doi.org/10.31289/agrica.v13i1.3121

Setyawan, E., Subantoro, R., & Prabowo, R. (2016). Analisis Peramalan (Forecasting) Produksi Karet (Hevea Brasiliensis) di PT Perkebunan Nusantara IX Kebun Sukamangli Kabupaten Kendal. Jurnal Ilmu-Ilmu Pertanian, VOL. 12.(2), 11–19.

Sukiyono, K., & Janah, M. (2019). Forecasting Model Selection of Curly Red Chili Price at Retail Level. Indonesian Journal of Agricultural Research, 2(1), 1–12. https://doi.org/10.32734/injar.v2i1.859

Sukiyono, K., Nabiu, M., Sumantri, B., & Novanda, R. R. (2018). Selecting an Accurate Cacao Price Forecasting Model. IOP Conf. Series : Journal of Physics, 1114, 1–7.

Yuliati, R., & Hutajulu, D. M. (2020). Pengaruh Harga Komoditas Pangan Terhadap Inflasi di Kota Magelang. Jurnal Wira Ekonomi Mikroskil : JWEM, 10(2), 103–116

Buku

Badan Pusat Statistik. (2015). Statistik Indonesia 2015. In Badan Pusat Statistik. Jakarta: Badan Pusat Statistik

Widarjono, A. (2018). Ekonometrika Pengantar dan Aplikasinya Disertai Panduan EViews (Lima). Yogyakarta: UPP STIM YKPN.

Website :

Badan Pusat Statistik Kota Magelang. (2020). Laju Inflasi per Bulan Menurut Kelompok Pengeluaran di Kota Magelang (2012=100), 2015-2019. Retrieved September 5, 2021, from Badan Pusat Statistik Kota Magelang website: https://magelangkota.bps.go.id/statictable/2018/01/26/304/laju-inflasi-per-bulan-menurut-kelompok-pengeluaran-di-kota-magelang-2012-100-2015-2019.html

Gujarati, D. N. (2015). Dasar-Dasar Ekonometrika. Jakarta: Salemba Empat

SiHati. (2020). Perkembangan Harga Cabai Merah Besar Keriting. Retrieved May 12, 2020, from Sistem Informasi Harga dan Produksi Komoditi Provinsi Jawa Tengah website: https://hargajateng.org/.

Jogja Tribun News. (2020). Disperindag Sebut Kenaikan Harga Cabai di Kota Magelang Tak Terlalu Berpengaruh. Jogja Tribun News. Retrieved from https://jogja.tribunnews.com/2020/01/12/disperindag-sebut-kenaikan-harga-cabai-di-kota-magelang-tak-terlalu-berpengaruh

Lestari, N., & Wahyuningsih, N. (2012). Peramalan Kunjungan Wisata dengan Pendekatan Model SARIMA ( Studi kasus : Kusuma Agrowisata ). Jurnal Sains Dan Seni ITS, 1(1), 29–33.

Magelang Ekspres. (2019). Harga Cabai di Pasar Kota Magelang Anjlok, Permintaan Justru Lesu. Magelang Ekspres. Retrieved from https://magelangekspres.com/harga-cabai-di-pasar-kota-magelang-anjlok-permintaan-justru-lesu/

Article Metrics

Abstract View : 35 times
PDF Download : 7 times

Refbacks

  • There are currently no refbacks.